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The problem of the motion of a solid in a flow of particles around a fixed point is considered. This 

problem is well known to have an extremely non-conservative form. Nevertheless, it turns out that the 

dynamics of the solid in this problem can be described, with certain assumptions, by a system of 

Hamiltonian equations. The conditions under which this quite unexpected fact can occur, are 

investigated. 

The presence of a Hamiltonian structure considerably increases the interest in the problem of the 

existence of additional fist integrals of the equations of motion. It turns out that there are certain cases 

when these integrals exist. These include the case when the equations of motion allow the possibility of 

an integral similar to a Hess integral in the problem of the motion of a heavy solid around a fiied point. 

The steady-state motions of the system considered are also determined, and their stability is 

investigated. 

THE STUDY of the forces and moments of the forces of the interaction between a solid and a 
medium go back to Newton [l]. His investigations were continued by numerous others (see, 
for example, [Z]). The present state of the investigation of the interaction between a body and a 
medium, and also an investigation of different dynamic effects which occur even for the 
simplest models of the interactions, is described in [3]. 

1. We will consider the problem of the motion of a solid in a flow of gas in the following 
formulation. Suppose the gas consists of identical non-interacting particles, moving with 
constaA velocity in a fixed direction in a stationary absolute space. Suppose the particles 
interact absolutely inelastically with the solid, i.e. after collision the velocity of a particle with 
respect to the solid is zero. Suppose the surface of the solid is convex. Then, if the stream 
velocity considerably exceeds the product of the characteristic value of the angular velocity of 
the solid and the characteristic scattering from the solid to a fixed point, the equations of 
motion of the solid can be represented in the form+ 

zw*=zwxw+p,xc(y)s(y), y-=yxw (1.1) 

where Z = diag(Z,, Z2, Z3) is the inertia tensor of the solid with respect to the fixed point 0, 
0x,x,x, is a system of coordinates whose axes are directed along the principal axes of inertia of 
the inertia tensor at the point 0, w = (w,, w,, w,) is the angular-velocity vector, y = (rI, yz, r,) 

-fPrikI. Mat. Mekh. Vol. 57, No. 2, pp. 77-81. 1993. 

*Compare with the result of the paper by V. V. Saxonov, A mechanism of the loss of stability of the gravitational 

orientation of an artificial satellite. Preprint No. 107. Institute of Applied Mathematics, Academy of Sciences of the 

U.S.S.R., Moscow, 1988. 
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is the unit vector directed along the stream, and f is a constant, the value of which is 
pr~o~ional to the density of the gas and the square of the stream velocity. 

In Eq. (1.1) S(y) is the area of the shadow T(y) of the solid on the plane z(y), perpendicular 
to the stream velocity, i.e. the projection of the solid on the IC plane along the y direction, and 
c(y) = (c,(y) c,(y), c3(y)) is the vector connecting the fixed point with any point on the straight 
line I(y) parallel to y and containing the centroid of the shadow-the point coinciding with the 
centre of mass of a uniform plate occupying the region T. 

Equations (1.1) have an integral invariant of unit density, and also first integrals J1 = (Ao, y) 
and Jz = y2. Equations (1.1) are reversible, i.e. they can be subjected to a replacement of 
variables and time (0, y, t)+(-CO, y, -t). However, in general, these equations are not a 
system of Hamilton equations with some Poisson structure.The following assertion holds. 

Assertion 1. If, for any i, j, i # j, the following relations are satisfied 

the equations of motion are Hamiltonian with a Poisson structure, defined by an E (3) algebra, 
and can have an additional first integral. 

Proof. suppose 

c(YNY)=a~/ay (1.3) 

for a certain function U(y). Then, if the function U is sufficiently smooth, to satisfy relations (1.3) it is 
necessary and sufficient for conditions (1.2) to be satisfied. The equations of motion can then be 

represented in the form 

where the Hamilton function 

H =)$(I-‘M,M)+U(y) (1.5) 

defines I,, - - H-an additional fit integral of Eqs (l.l)-the analogue of the energy integral. 

We will point out some cases when relations (1.2) are satisfied and Eqs (1.1) possess a 
Hamiltonian structure. 

(a) The surface of the solid is cenrraZZy symmetric. In this case, the vector c(y) = c connects 
the fixed point and the centre of symmetry. Equations (1.2) can then be represented in the 
form 

and have the general solution 

s = WC, YN (1.6) 

The potential can now be represented in the form 

U(y) = f(=j$n)du 
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Hence, if the expression for the area of the shadow is described by a relation of the form 
(1.6), the equations of motion of the solid will be Hamiltonian. 

Cases exist when relations (1.6) are satisfied. 

The surfuce of a solid is sphe~c~. The area of the shadow is then constant and the equations 
of motion are identical with the equations of motion of a solid in a uniform force field, 

The surface of the solid which interacts with the particle flux is a centrally symmetric plate. In 
this case, S = S,, I c I-’ (c, y), where SO is the area of the plate, and the interaction potential has 
the form 

However, relations (1.6) are not always satisfied. If the surface of the solid is an ellipsoid, whose axes 
are collinear with the principal axes of inertia of the solid, we have 

where 4, b,, and b3 are the semi-axes of the ellipsoid. In this case, relation (1.6) will not, in general, be 

satisfied. 

(b) The su&zce of the solid is axisymmettic. In this case, the straight line Z(y) intersects the 
axis of symmetry of the surface of the solid. Then, if the fiied point is situated on the axis of 
symmetry, we have c(y)= ~((a, y))(a,, a,, a&, S= S((a, y)) and the potential U can be 
represented in the form 

WlY) 

u(y) = f I Sfu)x(W~ 
0 

An ellipsoid of rotation. Suppose the semi-axes of the ellipsoid Z+ and 4 are equal to b, 
c = (0, 0, c,). Then 

and the potential has the form 

2. We will point out some cases when the equations of motion have an additional integral. 

A trivial case. Suppose the surface of the solid is centrally symmetric and the centre of 
Sykes coincides with the point of suspension. Equations (1.1) then admit of an integral 
J, = (lo)“. In this case, the problem is completely integrable and is identical with the Euler- 
Poinsot problem. 

The case of axial symmetry. Suppose the body is dynamically symmetrical, that is, for 
example, the condition Z, = Z, is satisfied. Suppose also that the surface of the solid is centrally 
sy~e~ic and the centre of Sykes lies on the OX, axis. The equations of motion will then 
have a first integral J3 = 0,. This case is similar to the Lagrange case. 

Analogues of the Hess case. 1. Suppose the surface of the body is centrally symmetric, and 
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the centre of symmetry and the moments of inertia are such that 

Then, the equations of motion have a partial integral 

2. Suppose the surface of the solid is axisymmetric, and the axis of symmetry is defined by 
the vector a and contains the point of suspension. Then, if the relation, which differs from (2.1) 
by having c,, c, and c, replaced by a,, a, and a,, is satisfied, the equations of motion will 
have a partial integral (2.1). These two cases are similar to the Hess case. 

3. The equations of motion (1.1) have partial solutions, for which the solid undergoes 
rotation with constant angular velocity o around the streamlines of the gas. In this case, the 
angular velocity of the solid and the components of the vector y are related by the equation 

w2Zr X 7 + fi x, C(Y)W = 0 (3.1) 

The set of axes of rotation forms in the space R3(y) a conical surface consisting of straight 
lines passing through the origin of coordinates and the points on the sphere y2 = 1 such that 

Suppose c(y) = (0, 0, c3(y)). Then Eqs (3.1) have the solutions y* = (0, 0, +l). Suppose c(y) 
and S(y) are fairly smooth functions. Then the necessary conditions for these solutions to be 
stable have the form 

I~@ - f&sy3 - r,c3fsy5 - (13 - 12)(11 - r&J2 2 

3 2(Z,f,((Z, - Z3)(Z2 - Z3)Q4 + (It + 12 - 2Z3)n2y3c,fs + c;fV))K (3.2) 

(Zt - Z,)(Z, -Z&4 + (II + Z2 - 2/&&3c3fs+ Cif 2s2 2 0 (3.3) 

If Z1 = Z2, condition (3.3) is always satisfied, while condition (3.2) can be represented in the 
form 

Z&02 2 4l;fsc,y, (3.4) 

In the case of strict inequality, condition (3.4) is then not only necessary but also sufficient. 

4. Suppose the surface of the solid possesses a plane of symmetry coinciding with one of the 
coordinate planes of the system of coordinates O_x+z,x,, for example, with the 0x,x, plane. 
Then the system of equations (1.1) has a partial solution, for which 

73’0, o,=w2=0 

In this case, the equations of plane oscillations can be represented in the form of a 
Hamiltonian system. Suppose cp is an angle such that y1 =coscp, y2 =sincp, o, = cp’. Then 

or 
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dcp_aH &_ aH 
dt -F’ dt --alp’ H = )cII;‘p* +U(cp) 

WV)=-~f(coscpcz(cosrp,sincp,O)-sincpc,(cosrp,sincp,O)) 
0 

f(cos (&sin cp, O)dq 

where the Hamilton function H is their first integral (compare with [4]). 
Hence, even in the simplest mechanical model considered it is possible to observe fairly 

interesting dynamic properties. At the same time, the question of the effect of the neglected 
terms in the expression for the moments deserves a separate investigation. 
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