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The problem of the motion of a solid in a flow of particles around a fixed point is considered. This
problem is well known to have an extremely non-conservative form. Nevertheless, it turns out that the
dynamics of the solid in this problem can be described, with certain assumptions, by a system of
Hamiltonian equations. The conditions under which this quite unexpected fact can occur, are
investigated.

The presence of a Hamiltonian structure considerably increases the interest in the problem of the
existence of additional first integrals of the equations of motion. It turns out that there are certain cases
when these integrals exist. These include the case when the equations of motion allow the possibility of
an integral similar to a Hess integral in the problem of the motion of a heavy solid around a fixed point.
The steady-state motions of the system considered are also determined, and their stability is
investigated.

THE stuDY oOf the forces and moments of the forces of the interaction between a solid and a
medium go back to Newton [1]. His investigations were continued by numerous others (see,
for example, [2]). The present state of the investigation of the interaction between a body and a
medium, and also an investigation of different dynamic effects which occur even for the
simplest models of the interactions, is described in [3].

1. We will consider the problem of the motion of a solid in a flow of gas in the following
formulation. Suppose the gas consists of identical non-interacting particles, moving with
consta.t velocity in a fixed direction in a stationary absolute space. Suppose the particles
interact absolutely inelastically with the solid, i.e. after collision the velocity of a particle with
respect to the solid is zero. Suppose the surface of the solid is convex. Then, if the stream
velocity considerably exceeds the product of the characteristic value of the angular velocity of
the solid and the characteristic scattering from the solid to a fixed point, the equations of
motion of the solid can be represented in the formi

lo=loxo+ fyxc(y)SY), Y=1X0 1.1

where I=diag(l,, I,, I;) is the inertia tensor of the solid with respect to the fixed point O,
Ox;x,x, is a system of coordinates whose axes are directed along the principal axes of inertia of
the inertia tensor at the point O, 0 =(w,, ®,, ®,) is the angular-velocity vector, y=(y,, ¥,, ¥;)

tPriki. Mat. Mekh. Vol. 57, No. 2, pp. 77-81, 1993.
$Compare with the result of the paper by V. V. Sazonov, A mechanism of the loss of stability of the gravitational

orientation of an artificial satellite. Preprint No. 107. Institute of Applied Mathematics, Academy of Sciences of the
U.S.S.R., Moscow, 1988.
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is the unit vector directed along the stream, and f is a constant, the value of which is
proportional to the density of the gas and the square of the stream velocity.

In Eq. (1.1) S(y) is the area of the shadow T(7) of the solid on the plane n(y), perpendicular
to the stream velocity, i.e. the projection of the solid on the © plane along the vy direction, and
(V) =(c(y) ¢ (), c(v)) is the vector connecting the fixed point with any point on the straight
line /() parallel to y and containing the centroid of the shadow—the point coinciding with the
centre of mass of a uniform plate occupying the region 7.

Equations (1.1) have an integral invariant of unit density, and also first integrals J, = (lo, v)
and J,=v". Equations (1.1) are reversible, i.e. they can be subjected to a replacement of
variables and time (w, v, ) > (-, v, —f). However, in general, these equations are not a
system of Hamilton equations with some Poisson structure.The following assertion holds.

Assertion 1. 1f, for any i, j, i # j, the following relations are satisfied

9§ dc; .., as oc
ot ke S () = ¢ e L 2
4 ayj ; 62) ¢; . ov S(v) (1.2)

the equations of motion are Hamiltonian with a Poisson structure, defined by an E(3) algebra,
and can have an additional first integral.

Proof. Suppose

c(Y)S(y)=3U /3y (13)

for a certain function U(Y). Then, if the function U is sufficiently smooth, to satisfy relations (1.3) it is
necessary and sufficient for conditions (1.2) to be satisfied. The equations of motion can then be
represented in the form

M={MH}, y={(y.H}

(1.4)
M, M;)=euM;, (MpYi}=tpYe, {¥i.7;1=0

where the Hamilton function
H=Y¥("'MM)+U(Y) (1.5)

defines J, = H—an additional first integral of Eqs (1.1)—the analogue of the energy integral.

We will point out some cases when relations (1.2) are satisfied and Eqs (1.1) possess a
Hamiltonian structure.

(@) The surface of the solid is centrally symmetric. In this case, the vector c(y)=c connects

the fixed point and the centre of symmetry. Equations (1.2) can then be represented in the
form

C‘aS/aYJ=ClaS/aY‘
and have the general solution
§=5((c,7) 1.6

The potential can now be represented in the form

e
uivy=r ({S(u)du
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Hence, if the expression for the area of the shadow is described by a relation of the form
(1.6), the equations of motion of the solid will be Hamiltonian.
Cases exist when relations (1.6) are satisfied.

The surface of a solid is spherical. The area of the shadow is then constant and the equations
of motion are identical with the equations of motion of a solid in a uniform force field.

The surface of the solid which interacts with the particle flux is a centrally symmetric plate. In
this case, S=5,lcI” (c, Y), where S, is the area of the plate, and the interaction potential has
the form

U(Y) =Y 1S, sign(c, 1), 7))

However, relations (1.6) are not always satisfied. If the surface of the solid is an ellipsoid, whose axes
are collinear with the principal axes of inertia of the solid, we have

S=nbybyby(v? /6% +75 163 +43 1634

where b, b, and b, are the semi-axes of the ellipsoid. In this case, relation (1.6) will not, in general, be
satisfied.

(b) The surface of the solid is axisymmetric. In this case, the straight line I(y) intersects the
axis of symmetry of the surface of the solid. Then, if the fixed point is situated on the axis of

symmetry, we have c(Y)=x((o, V)Xo, o, o), S=S((o, ¥)) and the potential U can be
represented in the form

(oY)
u)=f ‘I’ S(uyy(u)du

An ellipsoid of rotation. Suppose the semi-axes of the ellipsoid b, and b, are equal to b,
¢=(0,0, ¢,). Then

3

21 (1 1), )
S(Y)=nb"by ;r**[-br-'gr)?a

and the potential has the form

b B2 _ 32 %
U(Y3) = rbbycsf f(ub b,f’3 u“‘J du
0 3

2. We will point out some cases when the equations of motion have an additional integral.

A trivial case. Suppose the surface of the solid is centrally symmetric and the centre of
symmetry coincides with the point of suspension. Equations (1.1) then admit of an integral
J;=(Iw)’. In this case, the problem is completely integrable and is identical with the Euler—
Poinsot problem.

The case of axial symmetry. Suppose the body is dynamically symmetrical, that is, for
example, the condition 1, = I, is satisfied. Suppose also that the surface of the solid is centrally
symmetric and the centre of symmetry lies on the Ox; axis. The equations of motion will then
have a first integral J, = ®,. This case is similar to the Lagrange case.

Analogues of the Hess case. 1. Suppose the surface of the body is centrally symmetric, and
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the centre of symmetry and the moments of inertia are such that

Then, the equations of motion have a partial integral

F= - Y Le, (17 - 1Y Lo, =0

2. Suppose the surface of the solid is axisymmetric, and the axis of symmetry is defined by
the vector a and contains the point of suspension. Then, if the relation, which differs from (2.1)
by having ¢,, ¢, and c, replaced by a,, o, and a,, is satisfied, the equations of motion will
have a partial integral (2.1). These two cases are similar to the Hess case.

3. The equations of motion (1.1) have partial solutions, for which the solid undergoes
rotation with constant angular velocity o around the streamlines of the gas. In this case, the
angular velocity of the solid and the components of the vector v are related by the equation

Xy Xy + fy xc(y)S(y)=0 3.1)

The set of axes of rotation forms in the space R’(y) a conical surface consisting of straight
lines passing through the origin of coordinates and the points on the sphere y* =1 such that

(Fy,yxec(¥)=0
Suppose c(y)=(0, 0, ¢,(y)). Then Eqgs (3.1) have the solutions y*=(0, 0, £1). Suppose c(y)

and S(y) are fairly smooth functions. Then the necessary conditions for these solutions to be
stable have the form

LL,QY - ey fSYs ~ LeafSY- ~ (I3 — ) - L)Q =
= 2L L (I, - L)y ~ 13)Q + (I, + I - 21,)0%y 3¢, /S + ¢ £ 252 (3.2)
(h = Iy )hy = )G + (1 + 1y ~21)Qy36, fS+ 3 252 = 0 33)

If 1, = I,, condition (3.3) is always satisfied, while condition (3.2) can be represented in the
form

Bo? =41 fSc;v; (34)
In the case of strict inequality, condition (3.4) is then not only necessary but also sufficient.
4. Suppose the surface of the solid possesses a plane of symmetry coinciding with one of the
coordinate planes of the system of coordinates Ox,x,x,, for example, with the Ox,x, plane.
Then the system of equations (1.1) has a partial solution, for which
¥, =0, 0, =m,=0

In this case, the equations of plane oscillations can be represented in the form of a
Hamiltonian system. Suppose ¢ is an angle such that vy, =cosg, v, =sing, ®,=¢". Then

L¢"= f(cos e, (cos @,sin @, 0) - sin gc; (Cos @,sin ¢, 0))S(cos ¢,sin ¢, 0)

or
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dp OH dp OoH 1.2
L B L H=yi'p+U
a5 & de Ki3p®+U(9)

L]

U(¢) = | f(cos gc, (cos ¢,sin 9,0) ~ sin ¢c, (cos ¢,sin 9,0))
0

S(cos ¢,sin @, 0)de

where the Hamilton function H is their first integral (compare with [4]).

Hence, even in the simplest mechanical model considered it is possible to observe fairly
interesting dynamic properties. At the same time, the question of the effect of the neglected
terms in the expression for the moments deserves a separate investigation.
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